Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin.
نویسندگان
چکیده
Mitochondrial uncoupling proteins (UCPs) are transporters that are important for thermogenesis. The net result of their activity is the exothermic movement of protons through the inner mitochondrial membrane, uncoupled from ATP synthesis. We have cloned a third member of the UCP family, UCP3. UCP3 is expressed at high levels in muscle and rodent brown adipose tissue. Overexpression in yeast reduced the mitochondrial membrane potential, showing that UCP3 is a functional uncoupling protein. UCP3 RNA levels are regulated by hormonal and dietary manipulations. In contrast, levels of UCP2, a widely expressed UCP family member, showed little hormonal regulation. In particular, muscle UCP3 levels were decreased 3-fold in hypothyroid rats and increased 6-fold in hyperthyroid rats. Thus UCP3 is a strong candidate to explain the effects of thyroid hormone on thermogenesis. White adipose UCP3 levels were greatly increased by treatment with the beta3-adrenergic agonist, CL214613, suggesting another pathway for increasing thermogenesis. UCP3 mRNA levels were also regulated by dexamethasone, leptin, and starvation, albeit differently in muscle and brown adipose tissue. Starvation caused increased muscle and decreased BAT UCP3, suggesting that muscle assumes a larger role in thermoregulation during starvation. The UCP3 gene is located close to that encoding UCP2, in a chromosomal region implicated in previous linkage studies as contributing to obesity.
منابع مشابه
Rat brown adipose tissue thermogenic features are altered during mid-pregnancy.
Brown adipose tissue (BAT) thermogenesis is inhibited during late-pregnancy and lactation in the rat. However, scarce information concerning BAT functionality during mid-pregnancy is available. The aim of this work was to investigate uncoupling proteins and leptin expression during placentation in rat BAT as well as other key parameters in the thermogenic function of the tissue. BAT mitochondri...
متن کاملRoles of norepinephrine, free Fatty acids, thyroid status, and skeletal muscle uncoupling protein 3 expression in sympathomimetic-induced thermogenesis.
Thyroid hormone (TH) plays a fundamental role in thermoregulation, yet the molecular mediators of its effects are not fully defined. Recently, skeletal muscle (SKM) uncoupling protein (UCP) 3 was shown to be an important mediator of the thermogenic effects of the widely abused sympathomimetic agents 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) and methamphetamine. Expression of UCP3 is reg...
متن کاملCirculating leptin and thyroid dysfunction.
The identification and sequencing of the ob gene and its product, leptin, in 1994 opened new insights in the study of the mechanisms controlling body weight and led to a surge of research activity. Since its discovery, leptin has been the subject of an enormous amount of work especially within the fields of nutrition, metabolism and endocrinology. Leptin is accepted as an adipose signal, and ev...
متن کاملWhite adipose tissue contributes to UCP1-independent thermogenesis.
Beta3-adrenergic receptors (AR) are nearly exclusively expressed in brown and white adipose tissues, and chronic activation of these receptors by selective agonists has profound anti-diabetes and anti-obesity effects. This study examined metabolic responses to acute and chronic beta3-AR activation in wild-type C57Bl/6 mice and congenic mice lacking functional uncoupling protein (UCP)1, the mole...
متن کاملLack of stearoyl-CoA desaturase 1 upregulates basal thermogenesis but causes hypothermia in a cold environment.
Stearoyl-CoA desaturase (SCD) is a microsomal enzyme involved in the biosynthesis of oleate and palmitoleate. Mice with a targeted disruption of the SCD1 isoform (SCD1-/-) exhibit reduced adiposity and increased energy expenditure. To address whether the energy expenditure is attributable to increased thermogenesis, we investigated the effect of SCD1 deficiency on basal and cold-induced thermog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 272 39 شماره
صفحات -
تاریخ انتشار 1997